3.8.65 \(\int \frac {(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{5/2}}{a+i a \tan (e+f x)} \, dx\) [765]

3.8.65.1 Optimal result
3.8.65.2 Mathematica [A] (verified)
3.8.65.3 Rubi [A] (verified)
3.8.65.4 Maple [A] (verified)
3.8.65.5 Fricas [B] (verification not implemented)
3.8.65.6 Sympy [F]
3.8.65.7 Maxima [A] (verification not implemented)
3.8.65.8 Giac [F]
3.8.65.9 Mupad [B] (verification not implemented)

3.8.65.1 Optimal result

Integrand size = 43, antiderivative size = 180 \[ \int \frac {(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{5/2}}{a+i a \tan (e+f x)} \, dx=-\frac {\sqrt {2} (3 i A-7 B) c^{5/2} \text {arctanh}\left (\frac {\sqrt {c-i c \tan (e+f x)}}{\sqrt {2} \sqrt {c}}\right )}{a f}+\frac {(3 i A-7 B) c^2 \sqrt {c-i c \tan (e+f x)}}{a f}+\frac {(3 i A-7 B) c (c-i c \tan (e+f x))^{3/2}}{6 a f}+\frac {(i A-B) (c-i c \tan (e+f x))^{5/2}}{2 a f (1+i \tan (e+f x))} \]

output
-(3*I*A-7*B)*c^(5/2)*arctanh(1/2*(c-I*c*tan(f*x+e))^(1/2)*2^(1/2)/c^(1/2)) 
*2^(1/2)/a/f+(3*I*A-7*B)*c^2*(c-I*c*tan(f*x+e))^(1/2)/a/f+1/6*(3*I*A-7*B)* 
c*(c-I*c*tan(f*x+e))^(3/2)/a/f+1/2*(I*A-B)*(c-I*c*tan(f*x+e))^(5/2)/a/f/(1 
+I*tan(f*x+e))
 
3.8.65.2 Mathematica [A] (verified)

Time = 6.18 (sec) , antiderivative size = 134, normalized size of antiderivative = 0.74 \[ \int \frac {(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{5/2}}{a+i a \tan (e+f x)} \, dx=\frac {c^2 \left (3 \sqrt {2} (-3 i A+7 B) \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-i c \tan (e+f x)}}{\sqrt {2} \sqrt {c}}\right )+\frac {2 \sqrt {c-i c \tan (e+f x)} \left (6 A+13 i B+3 i (A+3 i B) \tan (e+f x)+i B \tan ^2(e+f x)\right )}{-i+\tan (e+f x)}\right )}{3 a f} \]

input
Integrate[((A + B*Tan[e + f*x])*(c - I*c*Tan[e + f*x])^(5/2))/(a + I*a*Tan 
[e + f*x]),x]
 
output
(c^2*(3*Sqrt[2]*((-3*I)*A + 7*B)*Sqrt[c]*ArcTanh[Sqrt[c - I*c*Tan[e + f*x] 
]/(Sqrt[2]*Sqrt[c])] + (2*Sqrt[c - I*c*Tan[e + f*x]]*(6*A + (13*I)*B + (3* 
I)*(A + (3*I)*B)*Tan[e + f*x] + I*B*Tan[e + f*x]^2))/(-I + Tan[e + f*x]))) 
/(3*a*f)
 
3.8.65.3 Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.89, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.186, Rules used = {3042, 4071, 27, 87, 60, 60, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c-i c \tan (e+f x))^{5/2} (A+B \tan (e+f x))}{a+i a \tan (e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(c-i c \tan (e+f x))^{5/2} (A+B \tan (e+f x))}{a+i a \tan (e+f x)}dx\)

\(\Big \downarrow \) 4071

\(\displaystyle \frac {a c \int \frac {(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2}}{a^2 (i \tan (e+f x)+1)^2}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {c \int \frac {(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2}}{(i \tan (e+f x)+1)^2}d\tan (e+f x)}{a f}\)

\(\Big \downarrow \) 87

\(\displaystyle \frac {c \left (\frac {(-B+i A) (c-i c \tan (e+f x))^{5/2}}{2 c (1+i \tan (e+f x))}-\frac {1}{4} (3 A+7 i B) \int \frac {(c-i c \tan (e+f x))^{3/2}}{i \tan (e+f x)+1}d\tan (e+f x)\right )}{a f}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {c \left (\frac {(-B+i A) (c-i c \tan (e+f x))^{5/2}}{2 c (1+i \tan (e+f x))}-\frac {1}{4} (3 A+7 i B) \left (2 c \int \frac {\sqrt {c-i c \tan (e+f x)}}{i \tan (e+f x)+1}d\tan (e+f x)-\frac {2}{3} i (c-i c \tan (e+f x))^{3/2}\right )\right )}{a f}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {c \left (\frac {(-B+i A) (c-i c \tan (e+f x))^{5/2}}{2 c (1+i \tan (e+f x))}-\frac {1}{4} (3 A+7 i B) \left (2 c \left (2 c \int \frac {1}{(i \tan (e+f x)+1) \sqrt {c-i c \tan (e+f x)}}d\tan (e+f x)-2 i \sqrt {c-i c \tan (e+f x)}\right )-\frac {2}{3} i (c-i c \tan (e+f x))^{3/2}\right )\right )}{a f}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {c \left (\frac {(-B+i A) (c-i c \tan (e+f x))^{5/2}}{2 c (1+i \tan (e+f x))}-\frac {1}{4} (3 A+7 i B) \left (2 c \left (4 i \int \frac {1}{2-\frac {c-i c \tan (e+f x)}{c}}d\sqrt {c-i c \tan (e+f x)}-2 i \sqrt {c-i c \tan (e+f x)}\right )-\frac {2}{3} i (c-i c \tan (e+f x))^{3/2}\right )\right )}{a f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {c \left (\frac {(-B+i A) (c-i c \tan (e+f x))^{5/2}}{2 c (1+i \tan (e+f x))}-\frac {1}{4} (3 A+7 i B) \left (2 c \left (2 i \sqrt {2} \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-i c \tan (e+f x)}}{\sqrt {2} \sqrt {c}}\right )-2 i \sqrt {c-i c \tan (e+f x)}\right )-\frac {2}{3} i (c-i c \tan (e+f x))^{3/2}\right )\right )}{a f}\)

input
Int[((A + B*Tan[e + f*x])*(c - I*c*Tan[e + f*x])^(5/2))/(a + I*a*Tan[e + f 
*x]),x]
 
output
(c*(((I*A - B)*(c - I*c*Tan[e + f*x])^(5/2))/(2*c*(1 + I*Tan[e + f*x])) - 
((3*A + (7*I)*B)*(((-2*I)/3)*(c - I*c*Tan[e + f*x])^(3/2) + 2*c*((2*I)*Sqr 
t[2]*Sqrt[c]*ArcTanh[Sqrt[c - I*c*Tan[e + f*x]]/(Sqrt[2]*Sqrt[c])] - (2*I) 
*Sqrt[c - I*c*Tan[e + f*x]])))/4))/(a*f)
 

3.8.65.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 87
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[(-(b*e - a*f))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p 
+ 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p 
+ 1)))/(f*(p + 1)*(c*f - d*e))   Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] 
/; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || Intege 
rQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ[p, n]))))
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4071
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Si 
mp[a*(c/f)   Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1)*(A + B*x), x], x 
, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c 
+ a*d, 0] && EqQ[a^2 + b^2, 0]
 
3.8.65.4 Maple [A] (verified)

Time = 0.27 (sec) , antiderivative size = 150, normalized size of antiderivative = 0.83

method result size
derivativedivides \(\frac {2 i c \left (\frac {i B \left (c -i c \tan \left (f x +e \right )\right )^{\frac {3}{2}}}{3}+3 i \sqrt {c -i c \tan \left (f x +e \right )}\, B c +\sqrt {c -i c \tan \left (f x +e \right )}\, c A -4 c^{2} \left (\frac {\left (-\frac {i B}{8}-\frac {A}{8}\right ) \sqrt {c -i c \tan \left (f x +e \right )}}{\frac {c}{2}+\frac {i c \tan \left (f x +e \right )}{2}}+\frac {\left (\frac {7 i B}{2}+\frac {3 A}{2}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c -i c \tan \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right )}{4 \sqrt {c}}\right )\right )}{f a}\) \(150\)
default \(\frac {2 i c \left (\frac {i B \left (c -i c \tan \left (f x +e \right )\right )^{\frac {3}{2}}}{3}+3 i \sqrt {c -i c \tan \left (f x +e \right )}\, B c +\sqrt {c -i c \tan \left (f x +e \right )}\, c A -4 c^{2} \left (\frac {\left (-\frac {i B}{8}-\frac {A}{8}\right ) \sqrt {c -i c \tan \left (f x +e \right )}}{\frac {c}{2}+\frac {i c \tan \left (f x +e \right )}{2}}+\frac {\left (\frac {7 i B}{2}+\frac {3 A}{2}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c -i c \tan \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right )}{4 \sqrt {c}}\right )\right )}{f a}\) \(150\)

input
int((A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(5/2)/(a+I*a*tan(f*x+e)),x,method= 
_RETURNVERBOSE)
 
output
2*I/f/a*c*(1/3*I*B*(c-I*c*tan(f*x+e))^(3/2)+3*I*(c-I*c*tan(f*x+e))^(1/2)*B 
*c+(c-I*c*tan(f*x+e))^(1/2)*c*A-4*c^2*((-1/8*I*B-1/8*A)*(c-I*c*tan(f*x+e)) 
^(1/2)/(1/2*c+1/2*I*c*tan(f*x+e))+1/4*(7/2*I*B+3/2*A)*2^(1/2)/c^(1/2)*arct 
anh(1/2*(c-I*c*tan(f*x+e))^(1/2)*2^(1/2)/c^(1/2))))
 
3.8.65.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 406 vs. \(2 (140) = 280\).

Time = 0.27 (sec) , antiderivative size = 406, normalized size of antiderivative = 2.26 \[ \int \frac {(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{5/2}}{a+i a \tan (e+f x)} \, dx=-\frac {3 \, \sqrt {2} {\left (a f e^{\left (4 i \, f x + 4 i \, e\right )} + a f e^{\left (2 i \, f x + 2 i \, e\right )}\right )} \sqrt {-\frac {{\left (9 \, A^{2} + 42 i \, A B - 49 \, B^{2}\right )} c^{5}}{a^{2} f^{2}}} \log \left (-\frac {4 \, {\left ({\left (3 i \, A - 7 \, B\right )} c^{3} + {\left (a f e^{\left (2 i \, f x + 2 i \, e\right )} + a f\right )} \sqrt {-\frac {{\left (9 \, A^{2} + 42 i \, A B - 49 \, B^{2}\right )} c^{5}}{a^{2} f^{2}}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}\right )} e^{\left (-i \, f x - i \, e\right )}}{a f}\right ) - 3 \, \sqrt {2} {\left (a f e^{\left (4 i \, f x + 4 i \, e\right )} + a f e^{\left (2 i \, f x + 2 i \, e\right )}\right )} \sqrt {-\frac {{\left (9 \, A^{2} + 42 i \, A B - 49 \, B^{2}\right )} c^{5}}{a^{2} f^{2}}} \log \left (-\frac {4 \, {\left ({\left (3 i \, A - 7 \, B\right )} c^{3} - {\left (a f e^{\left (2 i \, f x + 2 i \, e\right )} + a f\right )} \sqrt {-\frac {{\left (9 \, A^{2} + 42 i \, A B - 49 \, B^{2}\right )} c^{5}}{a^{2} f^{2}}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}\right )} e^{\left (-i \, f x - i \, e\right )}}{a f}\right ) + 2 \, \sqrt {2} {\left (3 \, {\left (-3 i \, A + 7 \, B\right )} c^{2} e^{\left (4 i \, f x + 4 i \, e\right )} + 4 \, {\left (-3 i \, A + 7 \, B\right )} c^{2} e^{\left (2 i \, f x + 2 i \, e\right )} + 3 \, {\left (-i \, A + B\right )} c^{2}\right )} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}}{6 \, {\left (a f e^{\left (4 i \, f x + 4 i \, e\right )} + a f e^{\left (2 i \, f x + 2 i \, e\right )}\right )}} \]

input
integrate((A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(5/2)/(a+I*a*tan(f*x+e)),x, 
algorithm="fricas")
 
output
-1/6*(3*sqrt(2)*(a*f*e^(4*I*f*x + 4*I*e) + a*f*e^(2*I*f*x + 2*I*e))*sqrt(- 
(9*A^2 + 42*I*A*B - 49*B^2)*c^5/(a^2*f^2))*log(-4*((3*I*A - 7*B)*c^3 + (a* 
f*e^(2*I*f*x + 2*I*e) + a*f)*sqrt(-(9*A^2 + 42*I*A*B - 49*B^2)*c^5/(a^2*f^ 
2))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1)))*e^(-I*f*x - I*e)/(a*f)) - 3*sqrt(2) 
*(a*f*e^(4*I*f*x + 4*I*e) + a*f*e^(2*I*f*x + 2*I*e))*sqrt(-(9*A^2 + 42*I*A 
*B - 49*B^2)*c^5/(a^2*f^2))*log(-4*((3*I*A - 7*B)*c^3 - (a*f*e^(2*I*f*x + 
2*I*e) + a*f)*sqrt(-(9*A^2 + 42*I*A*B - 49*B^2)*c^5/(a^2*f^2))*sqrt(c/(e^( 
2*I*f*x + 2*I*e) + 1)))*e^(-I*f*x - I*e)/(a*f)) + 2*sqrt(2)*(3*(-3*I*A + 7 
*B)*c^2*e^(4*I*f*x + 4*I*e) + 4*(-3*I*A + 7*B)*c^2*e^(2*I*f*x + 2*I*e) + 3 
*(-I*A + B)*c^2)*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1)))/(a*f*e^(4*I*f*x + 4*I* 
e) + a*f*e^(2*I*f*x + 2*I*e))
 
3.8.65.6 Sympy [F]

\[ \int \frac {(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{5/2}}{a+i a \tan (e+f x)} \, dx=- \frac {i \left (\int \frac {A c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c}}{\tan {\left (e + f x \right )} - i}\, dx + \int \left (- \frac {A c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{2}{\left (e + f x \right )}}{\tan {\left (e + f x \right )} - i}\right )\, dx + \int \frac {B c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan {\left (e + f x \right )}}{\tan {\left (e + f x \right )} - i}\, dx + \int \left (- \frac {B c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{3}{\left (e + f x \right )}}{\tan {\left (e + f x \right )} - i}\right )\, dx + \int \left (- \frac {2 i A c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan {\left (e + f x \right )}}{\tan {\left (e + f x \right )} - i}\right )\, dx + \int \left (- \frac {2 i B c^{2} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{2}{\left (e + f x \right )}}{\tan {\left (e + f x \right )} - i}\right )\, dx\right )}{a} \]

input
integrate((A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))**(5/2)/(a+I*a*tan(f*x+e)),x)
 
output
-I*(Integral(A*c**2*sqrt(-I*c*tan(e + f*x) + c)/(tan(e + f*x) - I), x) + I 
ntegral(-A*c**2*sqrt(-I*c*tan(e + f*x) + c)*tan(e + f*x)**2/(tan(e + f*x) 
- I), x) + Integral(B*c**2*sqrt(-I*c*tan(e + f*x) + c)*tan(e + f*x)/(tan(e 
 + f*x) - I), x) + Integral(-B*c**2*sqrt(-I*c*tan(e + f*x) + c)*tan(e + f* 
x)**3/(tan(e + f*x) - I), x) + Integral(-2*I*A*c**2*sqrt(-I*c*tan(e + f*x) 
 + c)*tan(e + f*x)/(tan(e + f*x) - I), x) + Integral(-2*I*B*c**2*sqrt(-I*c 
*tan(e + f*x) + c)*tan(e + f*x)**2/(tan(e + f*x) - I), x))/a
 
3.8.65.7 Maxima [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 167, normalized size of antiderivative = 0.93 \[ \int \frac {(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{5/2}}{a+i a \tan (e+f x)} \, dx=\frac {i \, {\left (\frac {3 \, \sqrt {2} {\left (3 \, A + 7 i \, B\right )} c^{\frac {7}{2}} \log \left (-\frac {\sqrt {2} \sqrt {c} - \sqrt {-i \, c \tan \left (f x + e\right ) + c}}{\sqrt {2} \sqrt {c} + \sqrt {-i \, c \tan \left (f x + e\right ) + c}}\right )}{a} - \frac {12 \, \sqrt {-i \, c \tan \left (f x + e\right ) + c} {\left (A + i \, B\right )} c^{4}}{{\left (-i \, c \tan \left (f x + e\right ) + c\right )} a - 2 \, a c} + \frac {4 \, {\left (i \, {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {3}{2}} B c^{2} + 3 \, \sqrt {-i \, c \tan \left (f x + e\right ) + c} {\left (A + 3 i \, B\right )} c^{3}\right )}}{a}\right )}}{6 \, c f} \]

input
integrate((A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(5/2)/(a+I*a*tan(f*x+e)),x, 
algorithm="maxima")
 
output
1/6*I*(3*sqrt(2)*(3*A + 7*I*B)*c^(7/2)*log(-(sqrt(2)*sqrt(c) - sqrt(-I*c*t 
an(f*x + e) + c))/(sqrt(2)*sqrt(c) + sqrt(-I*c*tan(f*x + e) + c)))/a - 12* 
sqrt(-I*c*tan(f*x + e) + c)*(A + I*B)*c^4/((-I*c*tan(f*x + e) + c)*a - 2*a 
*c) + 4*(I*(-I*c*tan(f*x + e) + c)^(3/2)*B*c^2 + 3*sqrt(-I*c*tan(f*x + e) 
+ c)*(A + 3*I*B)*c^3)/a)/(c*f)
 
3.8.65.8 Giac [F]

\[ \int \frac {(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{5/2}}{a+i a \tan (e+f x)} \, dx=\int { \frac {{\left (B \tan \left (f x + e\right ) + A\right )} {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {5}{2}}}{i \, a \tan \left (f x + e\right ) + a} \,d x } \]

input
integrate((A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(5/2)/(a+I*a*tan(f*x+e)),x, 
algorithm="giac")
 
output
integrate((B*tan(f*x + e) + A)*(-I*c*tan(f*x + e) + c)^(5/2)/(I*a*tan(f*x 
+ e) + a), x)
 
3.8.65.9 Mupad [B] (verification not implemented)

Time = 9.39 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.36 \[ \int \frac {(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{5/2}}{a+i a \tan (e+f x)} \, dx=\frac {2\,B\,c^3\,\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}}{a\,f\,\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )-2\,a\,c\,f}+\frac {A\,c^2\,\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}\,2{}\mathrm {i}}{a\,f}-\frac {6\,B\,c^2\,\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}}{a\,f}-\frac {2\,B\,c\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{3/2}}{3\,a\,f}-\frac {\sqrt {2}\,A\,{\left (-c\right )}^{5/2}\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {-c}}\right )\,3{}\mathrm {i}}{a\,f}-\frac {\sqrt {2}\,B\,c^{5/2}\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2\,\sqrt {c}}\right )\,7{}\mathrm {i}}{a\,f}+\frac {A\,c^3\,\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}\,2{}\mathrm {i}}{a\,f\,\left (c+c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )} \]

input
int(((A + B*tan(e + f*x))*(c - c*tan(e + f*x)*1i)^(5/2))/(a + a*tan(e + f* 
x)*1i),x)
 
output
(2*B*c^3*(c - c*tan(e + f*x)*1i)^(1/2))/(a*f*(c - c*tan(e + f*x)*1i) - 2*a 
*c*f) + (A*c^2*(c - c*tan(e + f*x)*1i)^(1/2)*2i)/(a*f) - (6*B*c^2*(c - c*t 
an(e + f*x)*1i)^(1/2))/(a*f) - (2*B*c*(c - c*tan(e + f*x)*1i)^(3/2))/(3*a* 
f) - (2^(1/2)*A*(-c)^(5/2)*atan((2^(1/2)*(c - c*tan(e + f*x)*1i)^(1/2))/(2 
*(-c)^(1/2)))*3i)/(a*f) - (2^(1/2)*B*c^(5/2)*atan((2^(1/2)*(c - c*tan(e + 
f*x)*1i)^(1/2)*1i)/(2*c^(1/2)))*7i)/(a*f) + (A*c^3*(c - c*tan(e + f*x)*1i) 
^(1/2)*2i)/(a*f*(c + c*tan(e + f*x)*1i))